DeepIE/run/relation_extraction/etl_stl/train.py

283 lines
11 KiB
Python
Raw Normal View History

2020-05-20 19:32:45 +08:00
# _*_ coding:utf-8 _*_
import logging
import random
import sys
import time
import numpy as np
import torch
from torch import nn
from tqdm import tqdm
import models.spo_net.etl_stl as etl
from utils.data_util import Tokenizer
from utils.optimizer_util import set_optimizer
logger = logging.getLogger(__name__)
tokenizer = Tokenizer('cpt/bert-base-chinese/vocab.txt', do_lower_case=True)
class SPO(tuple):
"""用来存三元组的类
表现跟tuple基本一致只是重写了 __hash__ __eq__ 方法
使得在判断两个三元组是否等价时容错性更好
"""
def __init__(self, spo):
self.spox = (
tuple(tokenizer.tokenize(spo[0])),
spo[1],
tuple(tokenizer.tokenize(spo[2])),
)
def __hash__(self):
return self.spox.__hash__()
def __eq__(self, spo):
return self.spox == spo.spox
class Trainer(object):
def __init__(self, args, data_loaders, examples, word_emb, ent_conf, spo_conf):
self.args = args
self.device = torch.device("cuda:{}".format(args.device_id) if torch.cuda.is_available() else "cpu")
self.n_gpu = torch.cuda.device_count()
self.id2rel = {item: key for key, item in spo_conf.items()}
self.rel2id = spo_conf
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if self.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
self.model = etl.ERENet(args, word_emb, ent_conf, spo_conf)
self.model.to(self.device)
# self.resume(args)
logging.info('total gpu num is {}'.format(self.n_gpu))
if self.n_gpu > 1:
self.model = nn.DataParallel(self.model.cuda(), device_ids=[0, 1])
train_dataloader, dev_dataloader = data_loaders
train_eval, dev_eval = examples
self.eval_file_choice = {
"train": train_eval,
"dev": dev_eval,
}
self.data_loader_choice = {
"train": train_dataloader,
"dev": dev_dataloader,
}
# args.use_bert = False
self.optimizer = set_optimizer(args, self.model,
train_steps=(int(len(train_eval) / args.train_batch_size) + 1) * args.epoch_num)
def train(self, args):
best_f1 = 0.0
patience_stop = 0
self.model.train()
step_gap = 20
for epoch in range(int(args.epoch_num)):
global_loss = 0.0
for step, batch in tqdm(enumerate(self.data_loader_choice[u"train"]), mininterval=5,
desc=u'training at epoch : %d ' % epoch, leave=False, file=sys.stdout):
loss = self.forward(batch)
if step % step_gap == 0:
global_loss += loss
current_loss = global_loss / step_gap
print(
u"step {} / {} of epoch {}, train/loss: {}".format(step, len(self.data_loader_choice["train"]),
epoch, current_loss))
global_loss = 0.0
res_dev = self.eval_data_set("dev")
if res_dev['f1'] >= best_f1:
best_f1 = res_dev['f1']
logging.info("** ** * Saving fine-tuned model ** ** * ")
model_to_save = self.model.module if hasattr(self.model,
'module') else self.model # Only save the model it-self
output_model_file = args.output + "/pytorch_model.bin"
torch.save(model_to_save.state_dict(), str(output_model_file))
patience_stop = 0
else:
patience_stop += 1
if patience_stop >= args.patience_stop:
return
def resume(self, args):
resume_model_file = args.output + "/pytorch_model.bin"
logging.info("=> loading checkpoint '{}'".format(resume_model_file))
checkpoint = torch.load(resume_model_file, map_location='cpu')
self.model.load_state_dict(checkpoint)
def forward(self, batch, chosen=u'train', eval=False, answer_dict=None):
batch = tuple(t.to(self.device) for t in batch)
if not eval:
char_ids, word_ids, token_type_ids, subject_ids, subject_labels, object_labels = batch
loss = self.model(char_ids=char_ids, word_ids=word_ids, token_type_ids=token_type_ids,
subject_ids=subject_ids, subject_labels=subject_labels, object_labels=object_labels)
if self.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
loss.backward()
loss = loss.item()
self.optimizer.step()
self.optimizer.zero_grad()
return loss
else:
p_ids, char_ids, word_ids = batch
eval_file = self.eval_file_choice[chosen]
qids, subject_pred, po_pred = self.model(q_ids=p_ids,
char_ids=char_ids,
word_ids=word_ids,
eval_file=eval_file, is_eval=eval)
ans_dict = self.convert_spo_contour(qids, subject_pred, po_pred, eval_file,
answer_dict, use_bert=self.args.use_bert)
return ans_dict
def eval_data_set(self, chosen="dev"):
self.model.eval()
data_loader = self.data_loader_choice[chosen]
eval_file = self.eval_file_choice[chosen]
answer_dict = {i: [[], []] for i in range(len(eval_file))}
last_time = time.time()
with torch.no_grad():
for _, batch in tqdm(enumerate(data_loader), mininterval=5, leave=False, file=sys.stdout):
self.forward(batch, chosen, eval=True, answer_dict=answer_dict)
used_time = time.time() - last_time
logging.info('chosen {} took : {} sec'.format(chosen, used_time))
res = self.evaluate(eval_file, answer_dict, chosen)
self.model.train()
return res
def show(self, chosen="dev"):
self.model.eval()
answer_dict = {}
data_loader = self.data_loader_choice[chosen]
eval_file = self.eval_file_choice[chosen]
with torch.no_grad():
for _, batch in tqdm(enumerate(data_loader), mininterval=5, leave=False, file=sys.stdout):
loss, answer_dict_ = self.forward(batch, chosen, eval=True)
answer_dict.update(answer_dict_)
# self.badcase_analysis(eval_file, answer_dict, chosen)
@staticmethod
def evaluate(eval_file, answer_dict, chosen):
entity_em = 0
entity_pred_num = 0
entity_gold_num = 0
triple_em = 0
triple_pred_num = 0
triple_gold_num = 0
X, Y, Z = 1e-10, 1e-10, 1e-10
for key, value in answer_dict.items():
triple_gold = eval_file[key].gold_answer
entity_gold = eval_file[key].sub_entity_list
entity_pred, triple_pred = value
entity_em += len(set(entity_pred) & set(entity_gold))
entity_pred_num += len(set(entity_pred))
entity_gold_num += len(set(entity_gold))
# triple_em += len(set(triple_pred) & set(triple_gold))
# triple_pred_num += len(set(triple_pred))
# triple_gold_num += len(set(triple_gold))
R = set([SPO(spo) for spo in triple_pred])
T = set([SPO(spo) for spo in triple_gold])
# R = set([spo for spo in triple_pred])
# T = set([spo for spo in triple_gold])
# if R != T:
# print(R)
# print(T)
X += len(R & T)
Y += len(R)
Z += len(T)
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
entity_precision = 100.0 * entity_em / entity_pred_num if entity_pred_num > 0 else 0.
entity_recall = 100.0 * entity_em / entity_gold_num if entity_gold_num > 0 else 0.
entity_f1 = 2 * entity_recall * entity_precision / (entity_recall + entity_precision) if (
entity_recall + entity_precision) != 0 else 0.0
print('============================================')
print("{}/entity_em: {},\tentity_pred_num&entity_gold_num: {}\t{} ".format(chosen, entity_em, entity_pred_num,
entity_gold_num))
print(
"{}/entity_f1: {}, \tentity_precision: {},\tentity_recall: {} ".format(chosen, entity_f1, entity_precision,
entity_recall))
print('============================================')
print("{}/em: {},\tpre&gold: {}\t{} ".format(chosen, X, Y, Z))
print("{}/f1: {}, \tPrecision: {},\tRecall: {} ".format(chosen, f1 * 100, precision * 100,
recall * 100))
return {'f1': f1, "recall": recall, "precision": precision}
def convert_spo_contour(self, qids, subject_preds, po_preds, eval_file, answer_dict, use_bert=False):
for qid, subject, po_pred in zip(qids.data.cpu().numpy(), subject_preds.data.cpu().numpy(),
po_preds.data.cpu().numpy()):
if qid == -1:
continue
tokens = eval_file[qid.item()].context
context = eval_file[qid.item()].context
seq_len = min(len(context), self.args.max_len)
pred_entities = find_tag_position(po_pred, seq_len, self.id2rel)
po_predict = []
for o_1, o_2, tag in pred_entities:
po_predict.append((tokens[subject[0]:subject[1] + 1],
tag,
tokens[o_1:o_2 + 1])
)
if qid not in answer_dict:
print('erro in answer_dict ')
else:
answer_dict[qid][0].append(
tokens[subject[0]:subject[1] + 1])
answer_dict[qid][1].extend(po_predict)
def find_tag_position(find_list, seq_len, id2rel):
tag_list = list()
j = 0
while j < seq_len:
end = j
flag = True
if find_list[j] % 2 == 0 and find_list[j] != 0:
start = j
tag = id2rel[find_list[start]].split('-')[1]
for k in range(start + 1, seq_len):
if find_list[k] != find_list[start] + 1:
end = k - 1
flag = False
break
if flag:
end = seq_len - 1
tag_list.append((start, end, tag))
j = end + 1
return tag_list