92 lines
3.6 KiB
Python
92 lines
3.6 KiB
Python
#!/usr/bin/env python3
|
||
# coding: utf-8
|
||
# File: textrank.py
|
||
# Author: lhy<lhy_in_blcu@126.com,https://huangyong.github.io>
|
||
# Date: 18-4-17
|
||
|
||
import jieba.posseg as pseg
|
||
from collections import defaultdict
|
||
import sys
|
||
|
||
'''textrank图算法'''
|
||
class textrank_graph:
|
||
def __init__(self):
|
||
self.graph = defaultdict(list)
|
||
self.d = 0.85 #d是阻尼系数,一般设置为0.85
|
||
self.min_diff = 1e-5 #设定收敛阈值
|
||
|
||
#添加节点之间的边
|
||
def addEdge(self, start, end, weight):
|
||
self.graph[start].append((start, end, weight))
|
||
self.graph[end].append((end, start, weight))
|
||
|
||
#节点排序
|
||
def rank(self):
|
||
#默认初始化权重
|
||
weight_deafault = 1.0 / (len(self.graph) or 1.0)
|
||
#nodeweight_dict, 存储节点的权重
|
||
nodeweight_dict = defaultdict(float)
|
||
#outsum,存储节点的出度权重
|
||
outsum_node_dict = defaultdict(float)
|
||
#根据图中的边,更新节点权重
|
||
for node, out_edge in self.graph.items():
|
||
#是 [('是', '全国', 1), ('是', '调查', 1), ('是', '失业率', 1), ('是', '城镇', 1)]
|
||
nodeweight_dict[node] = weight_deafault
|
||
outsum_node_dict[node] = sum((edge[2] for edge in out_edge), 0.0)
|
||
#初始状态下的textrank重要性权重
|
||
sorted_keys = sorted(self.graph.keys())
|
||
#设定迭代次数,
|
||
step_dict = [0]
|
||
for step in range(1, 1000):
|
||
for node in sorted_keys:
|
||
s = 0
|
||
#计算公式:(edge_weight/outsum_node_dict[edge_node])*node_weight[edge_node]
|
||
for e in self.graph[node]:
|
||
s += e[2] / outsum_node_dict[e[1]] * nodeweight_dict[e[1]]
|
||
#计算公式:(1-d) + d*s
|
||
nodeweight_dict[node] = (1 - self.d) + self.d * s
|
||
step_dict.append(sum(nodeweight_dict.values()))
|
||
|
||
if abs(step_dict[step] - step_dict[step - 1]) <= self.min_diff:
|
||
break
|
||
|
||
#利用Z-score进行权重归一化,也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。
|
||
#先设定最大值与最小值均为系统存储的最大值和最小值
|
||
(min_rank, max_rank) = (sys.float_info[0], sys.float_info[3])
|
||
for w in nodeweight_dict.values():
|
||
if w < min_rank:
|
||
min_rank = w
|
||
if w > max_rank:
|
||
max_rank = w
|
||
|
||
for n, w in nodeweight_dict.items():
|
||
nodeweight_dict[n] = (w - min_rank/10.0) / (max_rank - min_rank/10.0)
|
||
|
||
return nodeweight_dict
|
||
|
||
'''基于textrank图算法的关键词提取'''
|
||
class TextRank:
|
||
def __init__(self):
|
||
self.candi_pos = ['n', 'v']
|
||
self.stop_pos = ['nt']
|
||
self.span = 5
|
||
|
||
def extract_keywords(self, word_list, num_keywords):
|
||
g = textrank_graph()
|
||
cm = defaultdict(int)
|
||
for i, word in enumerate(word_list):
|
||
if word[1][0] in self.candi_pos and len(word[0]) > 1:
|
||
for j in range(i + 1, i + self.span):
|
||
if j >= len(word_list):
|
||
break
|
||
if word_list[j][1][0] not in self.candi_pos or word_list[j][1] in self.stop_pos or len(word_list[j][0]) < 2:
|
||
continue
|
||
pair = tuple((word[0], word_list[j][0]))
|
||
cm[(pair)] += 1
|
||
|
||
for terms, w in cm.items():
|
||
g.addEdge(terms[0], terms[1], w)
|
||
nodes_rank = g.rank()
|
||
nodes_rank = sorted(nodes_rank.items(), key=lambda asd:asd[1], reverse=True)
|
||
|
||
return nodes_rank[:num_keywords] |