K-BERT/run_kbert_cls.py
2019-12-12 19:37:32 +08:00

579 lines
23 KiB
Python

# -*- encoding:utf-8 -*-
"""
This script provides an k-BERT exmaple for classification.
"""
import sys
import torch
import json
import random
import argparse
import collections
import torch.nn as nn
from uer.utils.vocab import Vocab
from uer.utils.constants import *
from uer.utils.tokenizer import *
from uer.model_builder import build_model
from uer.utils.optimizers import BertAdam
from uer.utils.config import load_hyperparam
from uer.utils.seed import set_seed
from uer.model_saver import save_model
from brain import KnowledgeGraph
from multiprocessing import Process, Pool
import numpy as np
class BertClassifier(nn.Module):
def __init__(self, args, model):
super(BertClassifier, self).__init__()
self.embedding = model.embedding
self.encoder = model.encoder
self.labels_num = args.labels_num
self.pooling = args.pooling
self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size)
self.output_layer_2 = nn.Linear(args.hidden_size, args.labels_num)
self.softmax = nn.LogSoftmax(dim=-1)
self.criterion = nn.NLLLoss()
self.use_vm = False if args.no_vm else True
print("[BertClassifier] use visible_matrix: {}".format(self.use_vm))
def forward(self, src, label, mask, pos=None, vm=None):
"""
Args:
src: [batch_size x seq_length]
label: [batch_size]
mask: [batch_size x seq_length]
"""
# Embedding.
emb = self.embedding(src, mask, pos)
# Encoder.
if not self.use_vm:
vm = None
output = self.encoder(emb, mask, vm)
# Target.
if self.pooling == "mean":
output = torch.mean(output, dim=1)
elif self.pooling == "max":
output = torch.max(output, dim=1)[0]
elif self.pooling == "last":
output = output[:, -1, :]
else:
output = output[:, 0, :]
output = torch.tanh(self.output_layer_1(output))
logits = self.output_layer_2(output)
loss = self.criterion(self.softmax(logits.view(-1, self.labels_num)), label.view(-1))
return loss, logits
def add_knowledge_worker(params):
p_id, sentences, columns, kg, vocab, args = params
sentences_num = len(sentences)
dataset = []
for line_id, line in enumerate(sentences):
if line_id % 10000 == 0:
print("Progress of process {}: {}/{}".format(p_id, line_id, sentences_num))
sys.stdout.flush()
line = line.strip().split('\t')
try:
if len(line) == 2:
label = int(line[columns["label"]])
text = CLS_TOKEN + line[columns["text_a"]]
tokens, pos, vm, _ = kg.add_knowledge_with_vm([text], add_pad=True, max_length=args.seq_length)
tokens = tokens[0]
pos = pos[0]
vm = vm[0].astype("bool")
token_ids = [vocab.get(t) for t in tokens]
mask = [1 if t != PAD_TOKEN else 0 for t in tokens]
dataset.append((token_ids, label, mask, pos, vm))
elif len(line) == 3:
label = int(line[columns["label"]])
text = CLS_TOKEN + line[columns["text_a"]] + SEP_TOKEN + line[columns["text_b"]] + SEP_TOKEN
tokens, pos, vm, _ = kg.add_knowledge_with_vm([text], add_pad=True, max_length=args.seq_length)
tokens = tokens[0]
pos = pos[0]
vm = vm[0].astype("bool")
token_ids = [vocab.get(t) for t in tokens]
mask = []
seg_tag = 1
for t in tokens:
if t == PAD_TOKEN:
mask.append(0)
else:
mask.append(seg_tag)
if t == SEP_TOKEN:
seg_tag += 1
dataset.append((token_ids, label, mask, pos, vm))
elif len(line) == 4: # for dbqa
qid=int(line[columns["qid"]])
label = int(line[columns["label"]])
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
text = CLS_TOKEN + text_a + SEP_TOKEN + text_b + SEP_TOKEN
tokens, pos, vm, _ = kg.add_knowledge_with_vm([text], add_pad=True, max_length=args.seq_length)
tokens = tokens[0]
pos = pos[0]
vm = vm[0].astype("bool")
token_ids = [vocab.get(t) for t in tokens]
mask = []
seg_tag = 1
for t in tokens:
if t == PAD_TOKEN:
mask.append(0)
else:
mask.append(seg_tag)
if t == SEP_TOKEN:
seg_tag += 1
dataset.append((token_ids, label, mask, pos, vm, qid))
else:
pass
except:
print("Error line: ", line)
return dataset
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Path options.
parser.add_argument("--pretrained_model_path", default=None, type=str,
help="Path of the pretrained model.")
parser.add_argument("--output_model_path", default="./models/classifier_model.bin", type=str,
help="Path of the output model.")
parser.add_argument("--vocab_path", default="./models/google_vocab.txt", type=str,
help="Path of the vocabulary file.")
parser.add_argument("--train_path", type=str, required=True,
help="Path of the trainset.")
parser.add_argument("--dev_path", type=str, required=True,
help="Path of the devset.")
parser.add_argument("--test_path", type=str, required=True,
help="Path of the testset.")
parser.add_argument("--config_path", default="./models/google_config.json", type=str,
help="Path of the config file.")
# Model options.
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size.")
parser.add_argument("--seq_length", type=int, default=256,
help="Sequence length.")
parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
"cnn", "gatedcnn", "attn", \
"rcnn", "crnn", "gpt", "bilstm"], \
default="bert", help="Encoder type.")
parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.")
parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first",
help="Pooling type.")
# Subword options.
parser.add_argument("--subword_type", choices=["none", "char"], default="none",
help="Subword feature type.")
parser.add_argument("--sub_vocab_path", type=str, default="models/sub_vocab.txt",
help="Path of the subword vocabulary file.")
parser.add_argument("--subencoder", choices=["avg", "lstm", "gru", "cnn"], default="avg",
help="Subencoder type.")
parser.add_argument("--sub_layers_num", type=int, default=2, help="The number of subencoder layers.")
# Tokenizer options.
parser.add_argument("--tokenizer", choices=["bert", "char", "word", "space"], default="bert",
help="Specify the tokenizer."
"Original Google BERT uses bert tokenizer on Chinese corpus."
"Char tokenizer segments sentences into characters."
"Word tokenizer supports online word segmentation based on jieba segmentor."
"Space tokenizer segments sentences into words according to space."
)
# Optimizer options.
parser.add_argument("--learning_rate", type=float, default=2e-5,
help="Learning rate.")
parser.add_argument("--warmup", type=float, default=0.1,
help="Warm up value.")
# Training options.
parser.add_argument("--dropout", type=float, default=0.5,
help="Dropout.")
parser.add_argument("--epochs_num", type=int, default=5,
help="Number of epochs.")
parser.add_argument("--report_steps", type=int, default=100,
help="Specific steps to print prompt.")
parser.add_argument("--seed", type=int, default=7,
help="Random seed.")
# Evaluation options.
parser.add_argument("--mean_reciprocal_rank", action="store_true", help="Evaluation metrics for DBQA dataset.")
# kg
parser.add_argument("--kg_name", required=True, help="KG name or path")
parser.add_argument("--workers_num", type=int, default=1, help="number of process for loading dataset")
parser.add_argument("--no_vm", action="store_true", help="Disable the visible_matrix")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Count the number of labels.
labels_set = set()
columns = {}
with open(args.train_path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
try:
line = line.strip().split("\t")
if line_id == 0:
for i, column_name in enumerate(line):
columns[column_name] = i
continue
label = int(line[columns["label"]])
labels_set.add(label)
except:
pass
args.labels_num = len(labels_set)
# Load vocabulary.
vocab = Vocab()
vocab.load(args.vocab_path)
args.vocab = vocab
# Build bert model.
# A pseudo target is added.
args.target = "bert"
model = build_model(args)
# Load or initialize parameters.
if args.pretrained_model_path is not None:
# Initialize with pretrained model.
model.load_state_dict(torch.load(args.pretrained_model_path), strict=False)
else:
# Initialize with normal distribution.
for n, p in list(model.named_parameters()):
if 'gamma' not in n and 'beta' not in n:
p.data.normal_(0, 0.02)
# Build classification model.
model = BertClassifier(args, model)
# For simplicity, we use DataParallel wrapper to use multiple GPUs.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = nn.DataParallel(model)
model = model.to(device)
# Datset loader.
def batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms):
instances_num = input_ids.size()[0]
for i in range(instances_num // batch_size):
input_ids_batch = input_ids[i*batch_size: (i+1)*batch_size, :]
label_ids_batch = label_ids[i*batch_size: (i+1)*batch_size]
mask_ids_batch = mask_ids[i*batch_size: (i+1)*batch_size, :]
pos_ids_batch = pos_ids[i*batch_size: (i+1)*batch_size, :]
vms_batch = vms[i*batch_size: (i+1)*batch_size]
yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch
if instances_num > instances_num // batch_size * batch_size:
input_ids_batch = input_ids[instances_num//batch_size*batch_size:, :]
label_ids_batch = label_ids[instances_num//batch_size*batch_size:]
mask_ids_batch = mask_ids[instances_num//batch_size*batch_size:, :]
pos_ids_batch = pos_ids[instances_num//batch_size*batch_size:, :]
vms_batch = vms[instances_num//batch_size*batch_size:]
yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch
# Build knowledge graph.
if args.kg_name == 'none':
spo_files = []
else:
spo_files = [args.kg_name]
kg = KnowledgeGraph(spo_files=spo_files, predicate=True)
def read_dataset(path, workers_num=1):
print("Loading sentences from {}".format(path))
sentences = []
with open(path, mode='r', encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
continue
sentences.append(line)
sentence_num = len(sentences)
print("There are {} sentence in total. We use {} processes to inject knowledge into sentences.".format(sentence_num, workers_num))
if workers_num > 1:
params = []
sentence_per_block = int(sentence_num / workers_num) + 1
for i in range(workers_num):
params.append((i, sentences[i*sentence_per_block: (i+1)*sentence_per_block], columns, kg, vocab, args))
pool = Pool(workers_num)
res = pool.map(add_knowledge_worker, params)
pool.close()
pool.join()
dataset = [sample for block in res for sample in block]
else:
params = (0, sentences, columns, kg, vocab, args)
dataset = add_knowledge_worker(params)
return dataset
# Evaluation function.
def evaluate(args, is_test, metrics='Acc'):
if is_test:
dataset = read_dataset(args.test_path, workers_num=args.workers_num)
else:
dataset = read_dataset(args.dev_path, workers_num=args.workers_num)
input_ids = torch.LongTensor([sample[0] for sample in dataset])
label_ids = torch.LongTensor([sample[1] for sample in dataset])
mask_ids = torch.LongTensor([sample[2] for sample in dataset])
pos_ids = torch.LongTensor([example[3] for example in dataset])
vms = [example[4] for example in dataset]
batch_size = args.batch_size
instances_num = input_ids.size()[0]
if is_test:
print("The number of evaluation instances: ", instances_num)
correct = 0
# Confusion matrix.
confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long)
model.eval()
if not args.mean_reciprocal_rank:
for i, (input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms)):
# vms_batch = vms_batch.long()
vms_batch = torch.LongTensor(vms_batch)
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
pos_ids_batch = pos_ids_batch.to(device)
vms_batch = vms_batch.to(device)
with torch.no_grad():
try:
loss, logits = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch)
except:
print(input_ids_batch)
print(input_ids_batch.size())
print(vms_batch)
print(vms_batch.size())
logits = nn.Softmax(dim=1)(logits)
pred = torch.argmax(logits, dim=1)
gold = label_ids_batch
for j in range(pred.size()[0]):
confusion[pred[j], gold[j]] += 1
correct += torch.sum(pred == gold).item()
if is_test:
print("Confusion matrix:")
print(confusion)
print("Report precision, recall, and f1:")
for i in range(confusion.size()[0]):
p = confusion[i,i].item()/confusion[i,:].sum().item()
r = confusion[i,i].item()/confusion[:,i].sum().item()
f1 = 2*p*r / (p+r)
if i == 1:
label_1_f1 = f1
print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i,p,r,f1))
print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct/len(dataset), correct, len(dataset)))
if metrics == 'Acc':
return correct/len(dataset)
elif metrics == 'f1':
return label_1_f1
else:
return correct/len(dataset)
else:
for i, (input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms)):
vms_batch = torch.LongTensor(vms_batch)
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
pos_ids_batch = pos_ids_batch.to(device)
vms_batch = vms_batch.to(device)
with torch.no_grad():
loss, logits = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch)
logits = nn.Softmax(dim=1)(logits)
if i == 0:
logits_all=logits
if i >= 1:
logits_all=torch.cat((logits_all,logits),0)
order = -1
gold = []
for i in range(len(dataset)):
qid = dataset[i][-1]
label = dataset[i][1]
if qid == order:
j += 1
if label == 1:
gold.append((qid,j))
else:
order = qid
j = 0
if label == 1:
gold.append((qid,j))
label_order = []
order = -1
for i in range(len(gold)):
if gold[i][0] == order:
templist.append(gold[i][1])
elif gold[i][0] != order:
order=gold[i][0]
if i > 0:
label_order.append(templist)
templist = []
templist.append(gold[i][1])
label_order.append(templist)
order = -1
score_list = []
for i in range(len(logits_all)):
score = float(logits_all[i][1])
qid=int(dataset[i][-1])
if qid == order:
templist.append(score)
else:
order = qid
if i > 0:
score_list.append(templist)
templist = []
templist.append(score)
score_list.append(templist)
rank = []
pred = []
print(len(score_list))
print(len(label_order))
for i in range(len(score_list)):
if len(label_order[i])==1:
if label_order[i][0] < len(score_list[i]):
true_score = score_list[i][label_order[i][0]]
score_list[i].sort(reverse=True)
for j in range(len(score_list[i])):
if score_list[i][j] == true_score:
rank.append(1 / (j + 1))
else:
rank.append(0)
else:
true_rank = len(score_list[i])
for k in range(len(label_order[i])):
if label_order[i][k] < len(score_list[i]):
true_score = score_list[i][label_order[i][k]]
temp = sorted(score_list[i],reverse=True)
for j in range(len(temp)):
if temp[j] == true_score:
if j < true_rank:
true_rank = j
if true_rank < len(score_list[i]):
rank.append(1 / (true_rank + 1))
else:
rank.append(0)
MRR = sum(rank) / len(rank)
print("MRR", MRR)
return MRR
# Training phase.
print("Start training.")
trainset = read_dataset(args.train_path, workers_num=args.workers_num)
print("Shuffling dataset")
random.shuffle(trainset)
instances_num = len(trainset)
batch_size = args.batch_size
print("Trans data to tensor.")
print("input_ids")
input_ids = torch.LongTensor([example[0] for example in trainset])
print("label_ids")
label_ids = torch.LongTensor([example[1] for example in trainset])
print("mask_ids")
mask_ids = torch.LongTensor([example[2] for example in trainset])
print("pos_ids")
pos_ids = torch.LongTensor([example[3] for example in trainset])
print("vms")
vms = [example[4] for example in trainset]
train_steps = int(instances_num * args.epochs_num / batch_size) + 1
print("Batch size: ", batch_size)
print("The number of training instances:", instances_num)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup, t_total=train_steps)
total_loss = 0.
result = 0.0
best_result = 0.0
for epoch in range(1, args.epochs_num+1):
model.train()
for i, (input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms)):
model.zero_grad()
vms_batch = torch.LongTensor(vms_batch)
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
pos_ids_batch = pos_ids_batch.to(device)
vms_batch = vms_batch.to(device)
loss, _ = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos=pos_ids_batch, vm=vms_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps))
sys.stdout.flush()
total_loss = 0.
loss.backward()
optimizer.step()
print("Start evaluation on dev dataset.")
result = evaluate(args, False)
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
else:
continue
print("Start evaluation on test dataset.")
evaluate(args, True)
# Evaluation phase.
print("Final evaluation on the test dataset.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.output_model_path))
else:
model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, True)
if __name__ == "__main__":
main()