CrimeKgAssitant/question_classify.py
2018-11-18 22:40:03 +08:00

151 lines
5.3 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# coding: utf-8
# File: question_classify.py
# Author: lhy<lhy_in_blcu@126.com,https://huangyong.github.io>
# Date: 18-11-11
import os
import numpy as np
import jieba.posseg as pseg
from keras.models import Sequential, load_model
from keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1D, Dense, Dropout, LSTM, Bidirectional
class QuestionClassify(object):
def __init__(self):
self.label_dict = {
0: "婚姻家庭",
1: "劳动纠纷",
2: "交通事故",
3: "债权债务",
4: "刑事辩护",
5: "合同纠纷",
6: "房产纠纷",
7: "侵权",
8: "公司法",
9: "医疗纠纷",
10: "拆迁安置",
11: "行政诉讼",
12: "建设工程"
}
cur = '/'.join(os.path.abspath(__file__).split('/')[:-1])
self.embedding_path = os.path.join(cur, 'embedding/word_vec_300.bin')
self.embdding_dict = self.load_embedding(self.embedding_path)
self.max_length = 60
self.embedding_size = 300
self.lstm_modelpath = 'model/lstm_question_classify.h5'
self.cnn_modelpath = 'model/cnn_question_classify.h5'
return
'''加载词向量'''
def load_embedding(self, embedding_path):
embedding_dict = {}
count = 0
for line in open(embedding_path):
line = line.strip().split(' ')
if len(line) < 300:
continue
wd = line[0]
vector = np.array([float(i) for i in line[1:]])
embedding_dict[wd] = vector
count += 1
if count % 10000 == 0:
print(count, 'loaded')
print('loaded %s word embedding, finished' % count, )
return embedding_dict
'''对文本进行分词处理'''
def seg_sent(self, s):
wds = [i.word for i in pseg.cut(s) if i.flag[0] not in ['w', 'x']]
return wds
'''基于wordvector通过lookup table的方式找到句子的wordvector的表示'''
def rep_sentencevector(self, sentence):
word_list = self.seg_sent(sentence)[:self.max_length]
embedding_matrix = np.zeros((self.max_length, self.embedding_size))
for index, wd in enumerate(word_list):
if wd in self.embdding_dict:
embedding_matrix[index] = self.embdding_dict.get(wd)
else:
continue
len_sent = len(word_list)
embedding_matrix = self.modify_sentencevector(embedding_matrix, len_sent)
return embedding_matrix
'''对于OOV词,通过左右词的词向量作平均,作为词向量表示'''
def modify_sentencevector(self, embedding_matrix, len_sent):
context_window = 2
for indx, vec in enumerate(embedding_matrix):
left = indx - context_window
right = indx + context_window
if left < 0:
left = 0
if right > len(embedding_matrix) - 1:
right = -2
context = embedding_matrix[left:right + 1]
if vec.tolist() == [0] * 300 and indx < len_sent:
context_vector = context.mean(axis=0)
embedding_matrix[indx] = context_vector
return embedding_matrix
'''对数据进行onehot映射操作'''
def label_onehot(self, label):
one_hot = [0] * len(self.label_dict)
one_hot[int(label)] = 1
return one_hot
'''构造CNN网络模型'''
def build_cnn_model(self):
model = Sequential()
model.add(Conv1D(64, 3, activation='relu', input_shape=(self.max_length, self.embedding_size)))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(128, 3, activation='relu'))
model.add(Conv1D(128, 3, activation='relu'))
model.add(GlobalAveragePooling1D())
model.add(Dropout(0.5))
model.add(Dense(13, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.summary()
return model
'''构造LSTM网络'''
def build_lstm_model(self):
model = Sequential()
model.add(LSTM(32, return_sequences=True, input_shape=(
self.max_length, self.embedding_size))) # returns a sequence of vectors of dimension 32
model.add(LSTM(32, return_sequences=True)) # returns a sequence of vectors of dimension 32
model.add(LSTM(32)) # return a single vector of dimension 32
model.add(Dense(13, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
return model
'''问题分类'''
def predict(self, sent):
model = load_model(self.cnn_modelpath)
sentence_vector = np.array([self.rep_sentencevector(sent)])
res = model.predict(sentence_vector)[0].tolist()
prob = max(res)
label = self.label_dict.get(res.index(prob))
return label, prob
if __name__ == '__main__':
handler = QuestionClassify()
while (1):
sent = input('question desc:')
label, prob = handler.predict(sent)
print('question_type:', label, prob)