38 lines
1.4 KiB
Python
38 lines
1.4 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
import os
|
|
import re
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
DIR = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
data = pd.DataFrame(columns=["Samples", "AUC", "Micro-F1", "Macro-F1", "Time"], dtype="float")
|
|
data.set_index(pd.MultiIndex.from_tuples((), names=("dataset", "method")), inplace=True)
|
|
for fname in os.listdir(DIR):
|
|
if fname.endswith(".log"):
|
|
try:
|
|
name, method = fname.split(".")[0].split('-')[0:2]
|
|
with open(os.path.join(DIR, fname)) as f:
|
|
l = np.array(
|
|
re.findall(
|
|
r"STEP3: end learning embeddings; time cost: (\d+\.\d+)s.*roc= (\d+\.\d+).*{'micro': (\d+\.\d+), 'macro': (\d+\.\d+), 'samples': \d+\.\d+, 'weighted': \d+\.\d+}",
|
|
f.read(),
|
|
re.DOTALL
|
|
)[-1],
|
|
dtype="float"
|
|
)[[1,2,3,0]]
|
|
if (name, method) not in data.index:
|
|
data.loc[(name, method), :] = 0
|
|
n = data.loc[(name, method)][0]
|
|
l = (n * np.array(data.loc[(name, method)][1:5]) + l)/(n + 1)
|
|
data.loc[(name, method)][0] += 1
|
|
data.loc[(name, method), 1:5] = l
|
|
except Exception as e:
|
|
print(f"failed with {fname}: {e}")
|
|
data.sort_index(inplace=True)
|
|
|
|
data.to_csv(os.path.join(DIR, "result.csv"))
|