setuptools==39.1.0 #tensorflow 1.10.0 has requirement setuptools<=39.1.0, but you'll have setuptools 39.2.0 which is incompatible absl-py==0.2.2 astor==0.6.2 backports.weakref==1.0.post1 bleach==1.5.0 decorator==4.3.0 #enum34==1.1.6 # enum34 is not necessary for python > 3.4 funcsigs==1.0.2 gast==0.2.0 grpcio==1.12.1 html5lib==0.9999999 Markdown==2.6.11 mock==2.0.0 numpy==1.14.5 pbr==4.0.4 protobuf==3.6.0 scipy==1.1.0 six==1.11.0 #sklearn==0.0 termcolor==1.1.0 Werkzeug==0.14.1 # we update to the latest version of the following packages @18 Oct 2018 # the orignal one: https://github.com/williamleif/GraphSAGE #futures==3.2.0 networkx==2.2 tensorflow==1.10.0 tensorboard==1.10.0 gensim==3.0.1 scikit-learn==0.19.0 #0.20.0 is OK but may get some warnings # if your want utilize your gpu for speeding up, try simply use the following conda command # tested in python==3.6.6 # either -> conda install tensorflow-gpu==1.10.0 #this version will help you to install cuda and cudnn # for cuda driver compatibility: https://docs.nvidia.com/deploy/cuda-compatibility/index.html # e.g. if driver 384.xx -> conda install tensorflow-gpu=1.10.0 cudatoolkit=9.0 # or -> simply build from docker image: docker pull tensorflow/tensorflow:1.10.0-gpu-py3 # ref: https://www.tensorflow.org/install/docker#gpu_support