node2vec&deepwalk_checked_v0.0 & alias samp detail
1. fix deepwalk; 2. fix deepwalk; 3. try to explain alias sampling method based abrw (see code comments therein); 4. add a method in graph.py for adding weights to networkx graph (in order to fix node2vec); 5. format graph.py;
This commit is contained in:
commit
57d670f786
@ -22,9 +22,9 @@ class Graph(object):
|
||||
#--------------------commonly used APIs that will modify graph-------------------------
|
||||
#--------------------------------------------------------------------------------------
|
||||
def node_mapping(self):
|
||||
""" node id and index mapping;
|
||||
based on the order given by networkx G.nodes();
|
||||
NB: updating is needed if any node is added/removed;
|
||||
""" node id and index mapping; \n
|
||||
based on the order given by networkx G.nodes(); \n
|
||||
NB: updating is needed if any node is added/removed; \n
|
||||
"""
|
||||
i = 0 #node index
|
||||
self.look_up_dict = {} #init
|
||||
@ -35,10 +35,10 @@ class Graph(object):
|
||||
i += 1
|
||||
|
||||
def read_adjlist(self, path, directed=False):
|
||||
""" read adjacency list format graph;
|
||||
support unweighted and (un)directed graph;
|
||||
format: see https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html
|
||||
NB: not supoort weighted graph
|
||||
""" read adjacency list format graph; \n
|
||||
support unweighted and (un)directed graph; \n
|
||||
format: see https://networkx.github.io/documentation/stable/reference/readwrite/adjlist.html \n
|
||||
NB: not supoort weighted graph \n
|
||||
"""
|
||||
if directed:
|
||||
self.G = nx.read_adjlist(path, create_using=nx.DiGraph())
|
||||
@ -47,9 +47,9 @@ class Graph(object):
|
||||
self.node_mapping() #update node id index mapping
|
||||
|
||||
def read_edgelist(self, path, weighted=False, directed=False):
|
||||
""" read edge list format graph;
|
||||
support (un)weighted and (un)directed graph;
|
||||
format: see https://networkx.github.io/documentation/stable/reference/readwrite/edgelist.html
|
||||
""" read edge list format graph; \n
|
||||
support (un)weighted and (un)directed graph; \n
|
||||
format: see https://networkx.github.io/documentation/stable/reference/readwrite/edgelist.html \n
|
||||
"""
|
||||
if directed:
|
||||
self.G = nx.read_edgelist(path, create_using=nx.DiGraph())
|
||||
@ -57,10 +57,19 @@ class Graph(object):
|
||||
self.G = nx.read_edgelist(path, create_using=nx.Graph())
|
||||
self.node_mapping() #update node id index mapping
|
||||
|
||||
def add_edge_weight(self, equal_weight=1.0):
|
||||
''' add weights to networkx graph; \n
|
||||
currently only support adding 1.0 to all existing edges; \n
|
||||
some NE method may require 'weight' attribute spcified in networkx graph; \n
|
||||
to do... support user-specified weights e.g. from file (similar to read_node_attr): node_id1 node_id2 weight \n
|
||||
https://networkx.github.io/documentation/stable/reference/generated/networkx.classes.function.set_edge_attributes.html#networkx.classes.function.set_edge_attributes
|
||||
'''
|
||||
nx.set_edge_attributes(self.G, equal_weight, 'weight') #check the url and use dict to assign diff weights to diff edges
|
||||
|
||||
def read_node_attr(self, path):
|
||||
""" read node attributes and store as NetworkX graph {'node_id': {'attr': values}}
|
||||
input file format: node_id1 attr1 attr2 ... attrM
|
||||
node_id2 attr1 attr2 ... attrM
|
||||
""" read node attributes and store as NetworkX graph {'node_id': {'attr': values}} \n
|
||||
input file format: node_id1 attr1 attr2 ... attrM \n
|
||||
node_id2 attr1 attr2 ... attrM \n
|
||||
"""
|
||||
with open(path, 'r') as fin:
|
||||
for l in fin.readlines():
|
||||
@ -68,20 +77,20 @@ class Graph(object):
|
||||
self.G.nodes[vec[0]]['attr'] = np.array([float(x) for x in vec[1:]])
|
||||
|
||||
def read_node_label(self, path):
|
||||
""" todo... read node labels and store as NetworkX graph {'node_id': {'label': values}}
|
||||
input file format: node_id1 labels
|
||||
node_id2 labels
|
||||
with open(path, 'r') as fin:
|
||||
for l in fin.readlines():
|
||||
vec = l.split()
|
||||
self.G.nodes[vec[0]]['label'] = np.array([float(x) for x in vec[1:]])
|
||||
""" todo... read node labels and store as NetworkX graph {'node_id': {'label': values}} \n
|
||||
input file format: node_id1 labels \n
|
||||
node_id2 labels \n
|
||||
with open(path, 'r') as fin: \n
|
||||
for l in fin.readlines(): \n
|
||||
vec = l.split() \n
|
||||
self.G.nodes[vec[0]]['label'] = np.array([float(x) for x in vec[1:]]) \n
|
||||
"""
|
||||
pass #to do...
|
||||
|
||||
def remove_edge(self, ratio=0.0):
|
||||
""" randomly remove edges/links
|
||||
ratio: the percentage of edges to be removed
|
||||
edges_removed: return removed edges, each of which is a pair of nodes
|
||||
""" randomly remove edges/links \n
|
||||
ratio: the percentage of edges to be removed \n
|
||||
edges_removed: return removed edges, each of which is a pair of nodes \n
|
||||
"""
|
||||
num_edges_removed = int( ratio * self.G.number_of_edges() )
|
||||
#random.seed(2018)
|
||||
@ -92,13 +101,13 @@ class Graph(object):
|
||||
return edges_removed
|
||||
|
||||
def remove_node_attr(self, ratio):
|
||||
""" todo... randomly remove node attributes;
|
||||
""" todo... randomly remove node attributes; \n
|
||||
"""
|
||||
pass #to do...
|
||||
|
||||
def remove_node(self, ratio):
|
||||
""" todo... randomly remove nodes;
|
||||
#self.node_mapping() #update node id index mapping is needed
|
||||
""" todo... randomly remove nodes; \n
|
||||
#self.node_mapping() #update node id index mapping is needed \n
|
||||
"""
|
||||
pass #to do...
|
||||
|
||||
@ -106,8 +115,8 @@ class Graph(object):
|
||||
#--------------------commonly used APIs that will not modify graph-------------------------
|
||||
#------------------------------------------------------------------------------------------
|
||||
def get_adj_mat(self, is_sparse=True):
|
||||
""" return adjacency matrix;
|
||||
use 'csr' format for sparse matrix
|
||||
""" return adjacency matrix; \n
|
||||
use 'csr' format for sparse matrix \n
|
||||
"""
|
||||
if is_sparse:
|
||||
return nx.to_scipy_sparse_matrix(self.G, nodelist=self.look_back_list, format='csr', dtype='float64')
|
||||
@ -115,8 +124,8 @@ class Graph(object):
|
||||
return nx.to_numpy_matrix(self.G, nodelist=self.look_back_list, dtype='float64')
|
||||
|
||||
def get_attr_mat(self, is_sparse=True):
|
||||
""" return attribute matrix;
|
||||
use 'csr' format for sparse matrix
|
||||
""" return attribute matrix; \n
|
||||
use 'csr' format for sparse matrix \n
|
||||
"""
|
||||
attr_dense_narray = np.vstack([self.G.nodes[self.look_back_list[i]]['attr'] for i in range(self.get_num_nodes())])
|
||||
if is_sparse:
|
||||
@ -132,6 +141,10 @@ class Graph(object):
|
||||
""" return the number of edges """
|
||||
return nx.number_of_edges(self.G)
|
||||
|
||||
def get_density(self):
|
||||
""" return the density of a graph """
|
||||
return nx.density(self.G)
|
||||
|
||||
def get_num_isolates(self):
|
||||
""" return the number of isolated nodes """
|
||||
return len(list(nx.isolates(self.G)))
|
||||
@ -153,8 +166,8 @@ class Graph(object):
|
||||
return list(nx.common_neighbors(self.G, node1, node2))
|
||||
|
||||
def get_centrality(self, centrality_type='degree'):
|
||||
""" todo... return specified type of centrality
|
||||
see https://networkx.github.io/documentation/stable/reference/algorithms/centrality.html
|
||||
""" todo... return specified type of centrality \n
|
||||
see https://networkx.github.io/documentation/stable/reference/algorithms/centrality.html \n
|
||||
"""
|
||||
pass #to do...
|
||||
|
||||
|
@ -1,3 +1,11 @@
|
||||
"""
|
||||
NE method: DeepWalk and Node2Vec
|
||||
|
||||
modified by Chengbin Hou and Zeyu Dong 2018
|
||||
|
||||
originally from https://github.com/thunlp/OpenNE/blob/master/src/openne/node2vec.py
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
import time
|
||||
import warnings
|
||||
@ -7,9 +15,7 @@ from . import walker
|
||||
|
||||
|
||||
class Node2vec(object):
|
||||
|
||||
def __init__(self, graph, path_length, num_paths, dim, p=1.0, q=1.0, dw=False, **kwargs):
|
||||
|
||||
kwargs["workers"] = kwargs.get("workers", 1)
|
||||
if dw:
|
||||
kwargs["hs"] = 1
|
||||
@ -18,9 +24,9 @@ class Node2vec(object):
|
||||
|
||||
self.graph = graph
|
||||
if dw:
|
||||
self.walker = walker.BasicWalker(graph, workers=kwargs["workers"])
|
||||
self.walker = walker.BasicWalker(graph, workers=kwargs["workers"]) #walker for deepwalk
|
||||
else:
|
||||
self.walker = walker.Walker(graph, p=p, q=q, workers=kwargs["workers"])
|
||||
self.walker = walker.Walker(graph, p=p, q=q, workers=kwargs["workers"]) #walker for node2vec
|
||||
print("Preprocess transition probs...")
|
||||
self.walker.preprocess_transition_probs()
|
||||
sentences = self.walker.simulate_walks(num_walks=num_paths, walk_length=path_length)
|
||||
|
@ -14,12 +14,7 @@ import numpy as np
|
||||
from networkx import nx
|
||||
|
||||
|
||||
def deepwalk_walk_wrapper(class_instance, walk_length, start_node):
|
||||
class_instance.deepwalk_walk(walk_length, start_node)
|
||||
|
||||
# ===========================================ABRW-weighted-walker============================================
|
||||
|
||||
|
||||
class WeightedWalker:
|
||||
''' Weighted Walker for Attributed Biased Randomw Walks (ABRW) method
|
||||
'''
|
||||
@ -28,52 +23,59 @@ class WeightedWalker:
|
||||
self.look_back_list = node_id_map
|
||||
self.T = transition_mat
|
||||
self.workers = workers
|
||||
# self.G = nx.to_networkx_graph(self.T, create_using=nx.Graph()) # wrong... will return symt transition mat
|
||||
self.G = nx.to_networkx_graph(self.T, create_using=nx.DiGraph()) # reconstructed graph based on transition matrix
|
||||
# print(nx.adjacency_matrix(self.G).todense()[0:6, 0:6])
|
||||
# self.rec_G = nx.to_networkx_graph(self.T, create_using=nx.Graph()) # wrong... will return symt transition mat
|
||||
self.rec_G = nx.to_networkx_graph(self.T, create_using=nx.DiGraph()) # reconstructed "directed" "weighted" graph based on transition matrix
|
||||
# print(nx.adjacency_matrix(self.rec_G).todense()[0:6, 0:6])
|
||||
# print(transition_mat[0:6, 0:6])
|
||||
# print(nx.adjacency_matrix(self.G).todense()==transition_mat)
|
||||
# print(nx.adjacency_matrix(self.rec_G).todense()==transition_mat)
|
||||
|
||||
# alias sampling for ABRW-------------------------
|
||||
def simulate_walks(self, num_walks, walk_length):
|
||||
t1 = time.time()
|
||||
self.preprocess_transition_probs(G=self.G) # construct alias table; adapted from node2vec
|
||||
self.preprocess_transition_probs(weighted_G=self.rec_G) # construct alias table; adapted from node2vec
|
||||
t2 = time.time()
|
||||
print(f'Time for construct alias table: {(t2-t1):.2f}')
|
||||
|
||||
walks = []
|
||||
nodes = list(self.G.nodes())
|
||||
print('Walk iteration:')
|
||||
nodes = list(self.rec_G.nodes())
|
||||
for walk_iter in range(num_walks):
|
||||
print(str(walk_iter+1), '/', str(num_walks))
|
||||
t1 = time.time()
|
||||
# random.seed(2018)
|
||||
random.shuffle(nodes)
|
||||
for node in nodes:
|
||||
walks.append(self.node2vec_walk(G=self.G, walk_length=walk_length, start_node=node))
|
||||
walks.append(self.weighted_walk(weighted_G=self.rec_G, walk_length=walk_length, start_node=node))
|
||||
t2 = time.time()
|
||||
print(f'Walk iteration: {walk_iter+1}/{num_walks}; time cost: {(t2-t1):.2f}')
|
||||
|
||||
for i in range(len(walks)): # use ind to retrive orignal node ID
|
||||
for i in range(len(walks)): # use ind to retrive orignal node ID
|
||||
for j in range(len(walks[0])):
|
||||
walks[i][j] = self.look_back_list[int(walks[i][j])]
|
||||
return walks
|
||||
|
||||
def node2vec_walk(self, G, walk_length, start_node): # more efficient way instead of copy from node2vec
|
||||
alias_nodes = self.alias_nodes
|
||||
def weighted_walk(self, weighted_G, walk_length, start_node): # more efficient way instead of copy from node2vec
|
||||
G = weighted_G
|
||||
walk = [start_node]
|
||||
while len(walk) < walk_length:
|
||||
cur = walk[-1]
|
||||
cur_nbrs = list(G.neighbors(cur))
|
||||
if len(cur_nbrs) > 0:
|
||||
walk.append(cur_nbrs[alias_draw(alias_nodes[cur][0], alias_nodes[cur][1])])
|
||||
else:
|
||||
break
|
||||
if len(cur_nbrs) > 0: # if non-isolated node
|
||||
walk.append(cur_nbrs[alias_draw(self.alias_nodes[cur][0], self.alias_nodes[cur][1])]) # alias sampling in O(1) time to get the index of
|
||||
else: # if isolated node # 1) randomly choose a nbr; 2) judege if use nbr or its alias
|
||||
break
|
||||
return walk
|
||||
|
||||
def preprocess_transition_probs(self, G):
|
||||
def preprocess_transition_probs(self, weighted_G):
|
||||
''' reconstructed G mush be weighted; \n
|
||||
return a dict of alias table for each node
|
||||
'''
|
||||
G = weighted_G
|
||||
alias_nodes = {} # unlike node2vec, the reconstructed graph is based on transtion matrix
|
||||
for node in G.nodes(): # no need to normalize again
|
||||
probs = [G[node][nbr]['weight'] for nbr in G.neighbors(node)]
|
||||
alias_nodes[node] = alias_setup(probs)
|
||||
self.alias_nodes = alias_nodes
|
||||
probs = [G[node][nbr]['weight'] for nbr in G.neighbors(node)] #pick prob of neighbors with non-zero weight --> sum up to 1.0
|
||||
#print(f'sum of prob: {np.sum(probs)}')
|
||||
alias_nodes[node] = alias_setup(probs) #alias table format {node_id: (array1, array2)}
|
||||
self.alias_nodes = alias_nodes #where array1 gives alias node indexes; array2 gives its prob
|
||||
#print(self.alias_nodes)
|
||||
|
||||
|
||||
'''
|
||||
@ -127,20 +129,23 @@ class WeightedWalker:
|
||||
return self.walks
|
||||
'''
|
||||
|
||||
|
||||
|
||||
def deepwalk_walk_wrapper(class_instance, walk_length, start_node):
|
||||
class_instance.deepwalk_walk(walk_length, start_node)
|
||||
|
||||
# ===========================================deepWalk-walker============================================
|
||||
|
||||
|
||||
class BasicWalker:
|
||||
def __init__(self, G, workers):
|
||||
self.G = G.G
|
||||
self.node_size = G.get_num_nodes()
|
||||
self.look_up_dict = G.look_up_dict
|
||||
def __init__(self, g, workers):
|
||||
self.g = g
|
||||
self.node_size = g.get_num_nodes()
|
||||
self.look_up_dict = g.look_up_dict
|
||||
|
||||
def deepwalk_walk(self, walk_length, start_node):
|
||||
'''
|
||||
Simulate a random walk starting from start node.
|
||||
'''
|
||||
G = self.G
|
||||
G = self.g.G
|
||||
look_up_dict = self.look_up_dict
|
||||
node_size = self.node_size
|
||||
|
||||
@ -159,37 +164,48 @@ class BasicWalker:
|
||||
'''
|
||||
Repeatedly simulate random walks from each node.
|
||||
'''
|
||||
G = self.G
|
||||
G = self.g.G
|
||||
walks = []
|
||||
nodes = list(G.nodes())
|
||||
print('Walk iteration:')
|
||||
for walk_iter in range(num_walks):
|
||||
t1 = time.time()
|
||||
# pool = multiprocessing.Pool(processes = 4)
|
||||
print(str(walk_iter+1), '/', str(num_walks))
|
||||
random.shuffle(nodes)
|
||||
for node in nodes:
|
||||
# walks.append(pool.apply_async(deepwalk_walk_wrapper, (self, walk_length, node, )))
|
||||
walks.append(self.deepwalk_walk(walk_length=walk_length, start_node=node))
|
||||
# pool.close()
|
||||
# pool.join()
|
||||
t2 = time.time()
|
||||
print(f'Walk iteration: {walk_iter+1}/{num_walks}; time cost: {(t2-t1):.2f}')
|
||||
# print(len(walks))
|
||||
return walks
|
||||
|
||||
|
||||
# ===========================================node2vec-walker============================================
|
||||
class Walker:
|
||||
def __init__(self, G, p, q, workers):
|
||||
self.G = G.G
|
||||
def __init__(self, g, p, q, workers):
|
||||
self.g = g
|
||||
self.p = p
|
||||
self.q = q
|
||||
self.node_size = G.node_size
|
||||
self.look_up_dict = G.look_up_dict
|
||||
|
||||
if self.g.get_isweighted():
|
||||
#print('is weighted graph: ', self.g.get_isweighted())
|
||||
#print(self.g.get_adj_mat(is_sparse=False)[0:6,0:6])
|
||||
pass
|
||||
else: #otherwise, add equal weights 1.0 to all existing edges
|
||||
#print('is weighted graph: ', self.g.get_isweighted())
|
||||
self.g.add_edge_weight(equal_weight=1.0) #add 'weight' to networkx graph
|
||||
#print(self.g.get_adj_mat(is_sparse=False)[0:6,0:6])
|
||||
|
||||
self.node_size = g.get_num_nodes()
|
||||
self.look_up_dict = g.look_up_dict
|
||||
|
||||
def node2vec_walk(self, walk_length, start_node):
|
||||
'''
|
||||
Simulate a random walk starting from start node.
|
||||
'''
|
||||
G = self.G
|
||||
G = self.g.G
|
||||
alias_nodes = self.alias_nodes
|
||||
alias_edges = self.alias_edges
|
||||
look_up_dict = self.look_up_dict
|
||||
@ -205,9 +221,7 @@ class Walker:
|
||||
walk.append(cur_nbrs[alias_draw(alias_nodes[cur][0], alias_nodes[cur][1])])
|
||||
else:
|
||||
prev = walk[-2]
|
||||
pos = (prev, cur)
|
||||
next = cur_nbrs[alias_draw(alias_edges[pos][0],
|
||||
alias_edges[pos][1])]
|
||||
next = cur_nbrs[alias_draw(alias_edges[(prev, cur)][0], alias_edges[(prev, cur)][1])]
|
||||
walk.append(next)
|
||||
else:
|
||||
break
|
||||
@ -217,22 +231,23 @@ class Walker:
|
||||
'''
|
||||
Repeatedly simulate random walks from each node.
|
||||
'''
|
||||
G = self.G
|
||||
G = self.g.G
|
||||
walks = []
|
||||
nodes = list(G.nodes())
|
||||
print('Walk iteration:')
|
||||
for walk_iter in range(num_walks):
|
||||
print(str(walk_iter+1), '/', str(num_walks))
|
||||
t1 = time.time()
|
||||
random.shuffle(nodes)
|
||||
for node in nodes:
|
||||
walks.append(self.node2vec_walk(walk_length=walk_length, start_node=node))
|
||||
t2 = time.time()
|
||||
print(f'Walk iteration: {walk_iter+1}/{num_walks}; time cost: {(t2-t1):.2f}')
|
||||
return walks
|
||||
|
||||
def get_alias_edge(self, src, dst):
|
||||
'''
|
||||
Get the alias edge setup lists for a given edge.
|
||||
'''
|
||||
G = self.G
|
||||
G = self.g.G
|
||||
p = self.p
|
||||
q = self.q
|
||||
|
||||
@ -246,18 +261,16 @@ class Walker:
|
||||
unnormalized_probs.append(G[dst][dst_nbr]['weight']/q)
|
||||
norm_const = sum(unnormalized_probs)
|
||||
normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]
|
||||
|
||||
return alias_setup(normalized_probs)
|
||||
|
||||
def preprocess_transition_probs(self):
|
||||
'''
|
||||
Preprocessing of transition probabilities for guiding the random walks.
|
||||
'''
|
||||
G = self.G
|
||||
|
||||
G = self.g.G
|
||||
alias_nodes = {}
|
||||
for node in G.nodes():
|
||||
unnormalized_probs = [G[node][nbr]['weight'] for nbr in G.neighbors(node)]
|
||||
unnormalized_probs = [G[node][nbr]['weight'] for nbr in G.neighbors(node)] #pick prob of neighbors with non-zero weight
|
||||
norm_const = sum(unnormalized_probs)
|
||||
normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]
|
||||
alias_nodes[node] = alias_setup(normalized_probs)
|
||||
@ -266,16 +279,20 @@ class Walker:
|
||||
triads = {}
|
||||
|
||||
look_up_dict = self.look_up_dict
|
||||
node_size = self.node_size #to do... node2vec directed and undirected
|
||||
for edge in G.edges(): #https://github.com/aditya-grover/node2vec/blob/master/src/node2vec.py
|
||||
alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
|
||||
node_size = self.node_size
|
||||
if self.g.get_isdirected():
|
||||
for edge in G.edges():
|
||||
alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
|
||||
else: #if undirected, duplicate the reverse direction; otherwise may get key error
|
||||
for edge in G.edges():
|
||||
alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
|
||||
alias_edges[(edge[1], edge[0])] = self.get_alias_edge(edge[1], edge[0])
|
||||
|
||||
self.alias_nodes = alias_nodes
|
||||
self.alias_edges = alias_edges
|
||||
|
||||
return
|
||||
|
||||
|
||||
#========================================= utils: alias sampling method ====================================================
|
||||
def alias_setup(probs):
|
||||
'''
|
||||
Compute utility lists for non-uniform sampling from discrete distributions.
|
||||
@ -295,7 +312,7 @@ def alias_setup(probs):
|
||||
else:
|
||||
larger.append(kk)
|
||||
|
||||
while len(smaller) > 0 and len(larger) > 0:
|
||||
while len(smaller) > 0 and len(larger) > 0: #it is all about use large prob to compensate small prob untill reach the average
|
||||
small = smaller.pop()
|
||||
large = larger.pop()
|
||||
|
||||
@ -306,7 +323,7 @@ def alias_setup(probs):
|
||||
else:
|
||||
larger.append(large)
|
||||
|
||||
return J, q
|
||||
return J, q #the values in J are indexes; it is possible to have repeated indexes if that that index have large prob to compensate others
|
||||
|
||||
|
||||
def alias_draw(J, q):
|
||||
@ -315,8 +332,8 @@ def alias_draw(J, q):
|
||||
'''
|
||||
K = len(J)
|
||||
|
||||
kk = int(np.floor(np.random.rand()*K))
|
||||
if np.random.rand() < q[kk]:
|
||||
return kk
|
||||
kk = int(np.floor(np.random.rand()*K)) #randomly choose a nbr (an index)
|
||||
if np.random.rand() < q[kk]: #use alias table to choose
|
||||
return kk #either that nbr node (an index)
|
||||
else:
|
||||
return J[kk]
|
||||
return J[kk] #or the nbr's alias node (an index)
|
21
src/main.py
21
src/main.py
@ -86,7 +86,7 @@ def parse_args():
|
||||
help='balance struc and attr info; ranging [0, inf]')
|
||||
parser.add_argument('--AttrComb-mode', default='concat', type=str,
|
||||
help='choices of mode: concat, elementwise-mean, elementwise-max')
|
||||
parser.add_argument('--Node2Vec-p', default=0.5, type=float,
|
||||
parser.add_argument('--Node2Vec-p', default=0.5, type=float, #if p=q=1.0 node2vec = deepwalk
|
||||
help='trade-off BFS and DFS; rid search [0.25; 0.50; 1; 2; 4]')
|
||||
parser.add_argument('--Node2Vec-q', default=0.5, type=float,
|
||||
help='trade-off BFS and DFS; rid search [0.25; 0.50; 1; 2; 4]')
|
||||
@ -179,20 +179,12 @@ def main(args):
|
||||
elif args.method == 'attrcomb':
|
||||
model = attrcomb.ATTRCOMB(graph=g, dim=args.dim, comb_with='deepwalk', number_walks=args.number_walks, walk_length=args.walk_length,
|
||||
window=args.window_size, workers=args.workers, comb_method=args.AttrComb_mode) #comb_method: concat, elementwise-mean, elementwise-max
|
||||
elif args.method == 'asne':
|
||||
if args.task == 'nc':
|
||||
model = asne.ASNE(graph=g, dim=args.dim, alpha=args.ASNE_lamb, epoch=args.epochs, learning_rate=args.learning_rate, batch_size=args.batch_size,
|
||||
X_test=None, Y_test=None, task=args.task, nc_ratio=args.label_reserved, lp_ratio=args.link_reserved, label_file=args.label_file)
|
||||
else:
|
||||
model = asne.ASNE(graph=g, dim=args.dim, alpha=args.ASNE_lamb, epoch=args.epochs, learning_rate=args.learning_rate, batch_size=args.batch_size,
|
||||
X_test=test_node_pairs, Y_test=test_edge_labels, task=args.task, nc_ratio=args.label_reserved, lp_ratio=args.link_reserved, label_file=args.label_file)
|
||||
elif args.method == 'deepwalk':
|
||||
model = node2vec.Node2vec(graph=g, path_length=args.walk_length,
|
||||
num_paths=args.number_walks, dim=args.dim,
|
||||
model = node2vec.Node2vec(graph=g, path_length=args.walk_length, num_paths=args.number_walks, dim=args.dim,
|
||||
workers=args.workers, window=args.window_size, dw=True)
|
||||
elif args.method == 'node2vec':
|
||||
model = node2vec.Node2vec(graph=g, path_length=args.walk_length, num_paths=args.number_walks, dim=args.dim,
|
||||
workers=args.workers, p=args.Node2Vec_p, q=args.Node2Vec_q, window=args.window_size)
|
||||
workers=args.workers, window=args.window_size, p=args.Node2Vec_p, q=args.Node2Vec_q)
|
||||
elif args.method == 'grarep':
|
||||
model = GraRep(graph=g, Kstep=args.GraRep_kstep, dim=args.dim)
|
||||
elif args.method == 'line':
|
||||
@ -201,6 +193,13 @@ def main(args):
|
||||
label_file=args.label_file, clf_ratio=args.label_reserved)
|
||||
else:
|
||||
model = line.LINE(g, epoch = args.epochs, rep_size=args.dim, order=args.LINE_order)
|
||||
elif args.method == 'asne':
|
||||
if args.task == 'nc':
|
||||
model = asne.ASNE(graph=g, dim=args.dim, alpha=args.ASNE_lamb, epoch=args.epochs, learning_rate=args.learning_rate, batch_size=args.batch_size,
|
||||
X_test=None, Y_test=None, task=args.task, nc_ratio=args.label_reserved, lp_ratio=args.link_reserved, label_file=args.label_file)
|
||||
else:
|
||||
model = asne.ASNE(graph=g, dim=args.dim, alpha=args.ASNE_lamb, epoch=args.epochs, learning_rate=args.learning_rate, batch_size=args.batch_size,
|
||||
X_test=test_node_pairs, Y_test=test_edge_labels, task=args.task, nc_ratio=args.label_reserved, lp_ratio=args.link_reserved, label_file=args.label_file)
|
||||
elif args.method == 'graphsage':
|
||||
model = graphsageAPI.graphsage_unsupervised_train(graph=g, graphsage_model = 'graphsage_mean')
|
||||
#we follow the default parameters, see __inti__.py in graphsage file
|
||||
|
Loading…
Reference in New Issue
Block a user