remove redundant dependencies

This commit is contained in:
Chengbin Hou 2018-11-30 20:32:16 +00:00
parent b9f4edbebd
commit 4903c0ef0e

View File

@ -1,35 +1,15 @@
setuptools==39.1.0 #tensorflow 1.10.0 has requirement setuptools<=39.1.0, but you'll have setuptools 39.2.0 which is incompatible
absl-py==0.2.2
astor==0.6.2
backports.weakref==1.0.post1
bleach==1.5.0
decorator==4.3.0
#enum34==1.1.6 # enum34 is not necessary for python > 3.4
funcsigs==1.0.2
gast==0.2.0
grpcio==1.12.1
html5lib==0.9999999
Markdown==2.6.11
mock==2.0.0
numpy==1.14.5
pbr==4.0.4
protobuf==3.6.0
scipy==1.1.0
six==1.11.0
#sklearn==0.0
termcolor==1.1.0
Werkzeug==0.14.1
# we update to the latest version of the following packages @18 Oct 2018
# the orignal one: https://github.com/williamleif/GraphSAGE
#futures==3.2.0
networkx==2.2
tensorflow==1.10.0
tensorboard==1.10.0
gensim==3.0.1
scikit-learn==0.19.0 #0.20.0 is OK but may get some warnings
# if your want utilize your gpu for speeding up, try simply use the following conda command
# tested in python==3.6.6
numpy==1.14.5
tensorflow==1.10.0 # to do... compatible with latest tf and tf-gpu
tensorboard==1.10.0
networkx==2.2
gensim==3.0.1
scikit-learn==0.19.0 # to do... compatible with >0.20
pandas==0.23.0
# want to use GPU? some useful info:
# either -> conda install tensorflow-gpu==1.10.0 #this version will help you to install cuda and cudnn
# for cuda driver compatibility: https://docs.nvidia.com/deploy/cuda-compatibility/index.html
# e.g. if driver 384.xx -> conda install tensorflow-gpu=1.10.0 cudatoolkit=9.0